Package: TSLSTMplus 1.0.5

TSLSTMplus: Long-Short Term Memory for Time-Series Forecasting, Enhanced

The LSTM (Long Short-Term Memory) model is a Recurrent Neural Network (RNN) based architecture that is widely used for time series forecasting. Customizable configurations for the model are allowed, improving the capabilities and usability of this model compared to other packages. This package is based on 'keras' and 'tensorflow' modules and the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.

Authors:Jaime Pizarroso Gonzalo [aut, ctb, cre], Antonio Muñoz San Roque [aut]

TSLSTMplus_1.0.5.tar.gz
TSLSTMplus_1.0.5.zip(r-4.5)TSLSTMplus_1.0.5.zip(r-4.4)TSLSTMplus_1.0.5.zip(r-4.3)
TSLSTMplus_1.0.5.tgz(r-4.4-any)TSLSTMplus_1.0.5.tgz(r-4.3-any)
TSLSTMplus_1.0.5.tar.gz(r-4.5-noble)TSLSTMplus_1.0.5.tar.gz(r-4.4-noble)
TSLSTMplus_1.0.5.tgz(r-4.4-emscripten)TSLSTMplus_1.0.5.tgz(r-4.3-emscripten)
TSLSTMplus.pdf |TSLSTMplus.html
TSLSTMplus/json (API)

# Install 'TSLSTMplus' in R:
install.packages('TSLSTMplus', repos = c('https://jaipizgon.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jaipizgon/tslstmplus/issues

On CRAN:

3.60 score 1 scripts 265 downloads 4 exports 81 dependencies

Last updated 3 months agofrom:e73a861624. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:LSTMModelminmax_scalets.lstmts.prepare.data

Dependencies:abindaskpassbackportsbase64encclicolorspaceconfigcurlfansifarverforecastfracdiffgenericsggplot2gluegreyboxgtableherehttrisobandjsonlitekeraslabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimemunsellnlmenloptrnnetopensslpillarpkgconfigplotrixpngpracmaprocessxpsquadprogquantmodR6rappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreticulaterlangrprojrootrstudioapiscalessmoothstatmodsystensorflowtexregtfautographtfrunstibbletidyselecttimeDatetseriestsutilsTTRurcautf8vctrsviridisLitewhiskerwithrxtablextsyamlzeallotzoo